Single hidden layer artificial neural network models versus multiple linear regression model in forecasting the time series of total ozone

نویسندگان

  • S. Chattopadhyay
  • G. Bandyopadhyay
چکیده

*Corresponding author, Email: [email protected] Tel./Fax: +9198 3073 6116 ABSTRACT: Present paper endeavors to develop predictive artificial neural network model for forecasting the mean monthly total ozone concentration over Arosa, Switzerland. Single hidden layer neural network models with variable number of nodes have been developed and their performances have been evaluated using the method of least squares and error estimation. Their performances have been compared with multiple linear regression model. Ultimately, single-hidden-layer model with 8 hidden nodes have been identified as the best predictive model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Quantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression

Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...

متن کامل

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

متن کامل

پیش‌بینی خشکسـالی شهـر خـاش بـا استفـاده از مـدل شبکـه عصبی

Drought Forecasting in Khash City by Using Neural Network Model Hossein Negaresh Associate Professor of Geography and Environmental PlanningFaculty, University of Sistan & Baluchestan Mohsen Armesh Holding Master Degree in climatology in Environmental Planning Extended Abstract 1- Introduction Drought is condition of lack of rainfall and increase in temperature occurring in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007